210 research outputs found

    An empirical learning-based validation procedure for simulation workflow

    Full text link
    Simulation workflow is a top-level model for the design and control of simulation process. It connects multiple simulation components with time and interaction restrictions to form a complete simulation system. Before the construction and evaluation of the component models, the validation of upper-layer simulation workflow is of the most importance in a simulation system. However, the methods especially for validating simulation workflow is very limit. Many of the existing validation techniques are domain-dependent with cumbersome questionnaire design and expert scoring. Therefore, this paper present an empirical learning-based validation procedure to implement a semi-automated evaluation for simulation workflow. First, representative features of general simulation workflow and their relations with validation indices are proposed. The calculation process of workflow credibility based on Analytic Hierarchy Process (AHP) is then introduced. In order to make full use of the historical data and implement more efficient validation, four learning algorithms, including back propagation neural network (BPNN), extreme learning machine (ELM), evolving new-neuron (eNFN) and fast incremental gaussian mixture model (FIGMN), are introduced for constructing the empirical relation between the workflow credibility and its features. A case study on a landing-process simulation workflow is established to test the feasibility of the proposed procedure. The experimental results also provide some useful overview of the state-of-the-art learning algorithms on the credibility evaluation of simulation models

    Bayesian Local Smoothing Modeling and Inference for Pre-surgical FMRI Data.

    Full text link
    There is a growing interest in using fMRI measurements and analyses as tools for pre-surgical planning. For such applications, spatial precision and control over false negatives and false positives are vital, requiring careful design of an image smoothing method and a classification procedure. This dissertation seeks computationally efficient approaches to overcome the limitation of existing methods and address new challenges in pre-surgical fMRI analyses. In the first study, we develop a Bayesian solution for the pre-surgical analysis of a single fMRI brain image. Specifically, we propose a novel spatially adaptive conditionally autoregressive model (CWAS) that adaptively and locally smoothes the fMRI data. We introduce a Bayesian theoretical decision approach that allows control of both false positives and false negatives to identify activated and deactivated brain regions. We benchmark the proposed solution to two existing spatially adaptive smoothing models, through simulation studies and two patients' pre-surgical fMRI datasets. In the second study, we extend the idea of spatially adaptive smoothing to multiple fMRI brain images in order to leverage spatial correlations across multiple images. In particular, we propose three spatially adaptive multivariate conditional autoregressive models that can be considered as extensions of the multivariate conditional autoregressive (MCAR) model (Gelfand and Vounatsou, 2003), the CWAS model, and the model of Reich and Hodges (2008), respectively, and one mixed-effects model assuming that all observed fMRI images originate from one common image. We compare the performance of the proposed models with those from the MCAR and CWAS models using simulation studies and two sets of fMRI brain images, acquired either from the same patient, same paradigm or same patient, different paradigms. The last study is motivated by fMRI brain images acquired at two different spatial resolutions from the same patient. We develop a Bayesian hierarchical model with spatially varying coefficients to retain the spatial precision from the high resolution image while utilizing information from the low resolution image to improve estimation and inference. Comparisons between the proposed model and the CWAS model, which operates at a single spatial resolution, are performed on simulated data and a patient's multi-resolution pre-surgical fMRI data.PhDBiostatisticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133339/1/zhuqingl_1.pd

    SAGDA: Achieving O(ϵ−2)\mathcal{O}(\epsilon^{-2}) Communication Complexity in Federated Min-Max Learning

    Full text link
    To lower the communication complexity of federated min-max learning, a natural approach is to utilize the idea of infrequent communications (through multiple local updates) same as in conventional federated learning. However, due to the more complicated inter-outer problem structure in federated min-max learning, theoretical understandings of communication complexity for federated min-max learning with infrequent communications remain very limited in the literature. This is particularly true for settings with non-i.i.d. datasets and partial client participation. To address this challenge, in this paper, we propose a new algorithmic framework called stochastic sampling averaging gradient descent ascent (SAGDA), which i) assembles stochastic gradient estimators from randomly sampled clients as control variates and ii) leverages two learning rates on both server and client sides. We show that SAGDA achieves a linear speedup in terms of both the number of clients and local update steps, which yields an O(ϵ−2)\mathcal{O}(\epsilon^{-2}) communication complexity that is orders of magnitude lower than the state of the art. Interestingly, by noting that the standard federated stochastic gradient descent ascent (FSGDA) is in fact a control-variate-free special version of SAGDA, we immediately arrive at an O(ϵ−2)\mathcal{O}(\epsilon^{-2}) communication complexity result for FSGDA. Therefore, through the lens of SAGDA, we also advance the current understanding on communication complexity of the standard FSGDA method for federated min-max learning.Comment: Published as a conference paper at NeurIPS 202

    Federated Multi-Objective Learning

    Full text link
    In recent years, multi-objective optimization (MOO) emerges as a foundational problem underpinning many multi-agent multi-task learning applications. However, existing algorithms in MOO literature remain limited to centralized learning settings, which do not satisfy the distributed nature and data privacy needs of such multi-agent multi-task learning applications. This motivates us to propose a new federated multi-objective learning (FMOL) framework with multiple clients distributively and collaboratively solving an MOO problem while keeping their training data private. Notably, our FMOL framework allows a different set of objective functions across different clients to support a wide range of applications, which advances and generalizes the MOO formulation to the federated learning paradigm for the first time. For this FMOL framework, we propose two new federated multi-objective optimization (FMOO) algorithms called federated multi-gradient descent averaging (FMGDA) and federated stochastic multi-gradient descent averaging (FSMGDA). Both algorithms allow local updates to significantly reduce communication costs, while achieving the {\em same} convergence rates as those of their algorithmic counterparts in the single-objective federated learning. Our extensive experiments also corroborate the efficacy of our proposed FMOO algorithms.Comment: Accepted in NeurIPS 202

    Uncertainty-Induced Transferability Representation for Source-Free Unsupervised Domain Adaptation

    Full text link
    Source-free unsupervised domain adaptation (SFUDA) aims to learn a target domain model using unlabeled target data and the knowledge of a well-trained source domain model. Most previous SFUDA works focus on inferring semantics of target data based on the source knowledge. Without measuring the transferability of the source knowledge, these methods insufficiently exploit the source knowledge, and fail to identify the reliability of the inferred target semantics. However, existing transferability measurements require either source data or target labels, which are infeasible in SFUDA. To this end, firstly, we propose a novel Uncertainty-induced Transferability Representation (UTR), which leverages uncertainty as the tool to analyse the channel-wise transferability of the source encoder in the absence of the source data and target labels. The domain-level UTR unravels how transferable the encoder channels are to the target domain and the instance-level UTR characterizes the reliability of the inferred target semantics. Secondly, based on the UTR, we propose a novel Calibrated Adaption Framework (CAF) for SFUDA, including i)the source knowledge calibration module that guides the target model to learn the transferable source knowledge and discard the non-transferable one, and ii)the target semantics calibration module that calibrates the unreliable semantics. With the help of the calibrated source knowledge and the target semantics, the model adapts to the target domain safely and ultimately better. We verified the effectiveness of our method using experimental results and demonstrated that the proposed method achieves state-of-the-art performances on the three SFUDA benchmarks. Code is available at https://github.com/SPIresearch/UTR

    DIAMOND: Taming Sample and Communication Complexities in Decentralized Bilevel Optimization

    Full text link
    Decentralized bilevel optimization has received increasing attention recently due to its foundational role in many emerging multi-agent learning paradigms (e.g., multi-agent meta-learning and multi-agent reinforcement learning) over peer-to-peer edge networks. However, to work with the limited computation and communication capabilities of edge networks, a major challenge in developing decentralized bilevel optimization techniques is to lower sample and communication complexities. This motivates us to develop a new decentralized bilevel optimization called DIAMOND (decentralized single-timescale stochastic approximation with momentum and gradient-tracking). The contributions of this paper are as follows: i) our DIAMOND algorithm adopts a single-loop structure rather than following the natural double-loop structure of bilevel optimization, which offers low computation and implementation complexity; ii) compared to existing approaches, the DIAMOND algorithm does not require any full gradient evaluations, which further reduces both sample and computational complexities; iii) through a careful integration of momentum information and gradient tracking techniques, we show that the DIAMOND algorithm enjoys O(ϵ−3/2)\mathcal{O}(\epsilon^{-3/2}) in sample and communication complexities for achieving an ϵ\epsilon-stationary solution, both of which are independent of the dataset sizes and significantly outperform existing works. Extensive experiments also verify our theoretical findings

    Localization of BEN1-LIKE protein and nuclear degradation during development of metaphloem sieve elements in Triticum aestivum L.

    Get PDF
    Metaphloem sieve elements (MSEs) in the developing caryopsis of Triticum aestivum L. undergo a unique type of programmed cell death (PCD); cell organelles gradually degrade with the MSE differentiation while mature sieve elements keep active. This study focuses on locating BEN1-LIKE protein and nuclear degradation in differentiating MSEs of wheat. Transmission electron microscopy (TEM) showed that nuclei degraded in MSE development. First, the degradation started at 2–3 days after flowering (DAF). The degraded fragments were then swallowed by phagocytic vacuoles at 4 DAF. Finally, nuclei almost completely degraded at 5 DAF. We measured the BEN1-LIKE protein expression in differentiating MSEs. In situ hybridization showed that BEN1-LIKE mRNA was a more obvious hybridization signal at 3–4 DAF at the microscopic level. Immuno-electron microscopy further revealed that BEN1-LIKE protein was mainly localized in MSE nuclei. Furthermore, MSE differentiation was tested using a TSQ Zn2+ fluorescence probe which showed that the dynamic change of Zn2+ accumulation was similar to BEN1-LIKE protein expression. These results suggest that nucleus degradation in wheat MSEs is associated with BEN1-LIKE protein and that the expression of this protein may be regulated by Zn2+ accumulation variation
    • …
    corecore